TensorFlow从0到1 - 5 - TensorFlow轻松搞定线性回归

TensorFlow从0到1系列回顾

上一篇 第一个机器学习问题 其实是一个线性回归问题(Linear Regression),呈现了用数据来训练模型的具体方式。本篇从平行世界返回,利用TensorFlow,重新解决一遍该问题。

TensorFlow的API有低级和高级之分。

底层的API基于TensorFlow内核,它主要用于研究或需要对模型进行完全控制的场合。如果你想使用TF来辅助实现某个特定算法、呈现和控制算法的每个细节,那么就该使用低级的API。

高级API基于TensorFlow内核构建,屏蔽了繁杂的细节,适合大多数场景下使用。如果你有一个想法要验证并快速获得结果,那么TF的高级API就是高效的构建工具。

本篇使用TF的低级API来呈现线性回归的每一个步骤。

线性回归

第一个机器学习的TF实现

TensorFlow的计算分为两个阶段:

  • 构建计算图;
  • 执行计算图。

先给出“平行世界”版本,(a, b)初始值为(-1, 50),第二次尝试(-1, 40)。

import tensorflow as tf

# model parameters
a = tf.Variable([-1.], tf.float32)
b = tf.Variable([50.], tf.float32)

# model input and output
x = tf.placeholder(tf.float32)
linear_model = a * x + b
y = tf.placeholder(tf.float32)

# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) / 8

# training data
x_train = [22, 25, 28, 30]
y_train = [18, 15, 12, 10]

# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)  # 1st

print("loss: %s" % (sess.run(loss, {x: x_train, y: y_train})))

# 2nd
fixa = tf.assign(a, [-1.])
fixb = tf.assign(b, [40.])
sess.run([fixa, fixb])

print("loss: %s" % (sess.run(loss, {x: x_train, y: y_train})))

程序输出

loss: 50.0
loss: 0.0

下载 tf_5_manual.py

上面的python代码利用了在2 TensorFlow内核基础 介绍的基本API实现了“第一个机器学习问题”。代码通过一步步构造计算图,最后得到了loss节点。loss即4 第一个机器学习问题中定义过的损失函数,这里再次给出其定义:

B-P-F-1 损失函数

构建好计算图,接下来开始执行。执行loss节点(同时提供基于tf.placeholder的训练数据),得到loss的值为50。然后开始第二次训练,修改基于tf.Variable的a和b的值,再次执行loss节点,loss的值为0,降到了最低。此时的a和b就是最佳的模型参数了。

还记得那个神秘力量吗?到底是什么让机器在第二次训练中将模型参数(a, b)的值从初始的随机值(-1, 50)迁移到最优的(-1, 40)?如果不靠运气的话,机器如何能自动的找到最优解呢?

梯度下降算法

在此之前,或许你已经想到了随机穷举的办法,因为机器不怕累。这的确是个办法,但面临的挑战也不可接受:不可控。因为即便是只有2个参数的模型训练,其枚举域也是无限大的,这和靠运气没有分别。运气差的话,等个几百年也说不定。

不绕圈子,那个神秘力量就是:梯度下降算法(gradient descent)。虽然它也是让机器一小步一小步的去尝试不同的(a, b)的组合,但是它能指导每次前进的方向,使得每尝试一组新的值,loss就能变小一点点,直到趋于稳定。

而这一切TF已经把它封装好了。 本篇先把它当个黑盒子使用。

tf.train API

import tensorflow as tf

# model parameters
a = tf.Variable([-1.], tf.float32)
b = tf.Variable([50.], tf.float32)

# model input and output
x = tf.placeholder(tf.float32)
linear_model = a * x + b
y = tf.placeholder(tf.float32)

# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) / 8   # sum of the squares

# training data
x_train = [22, 25, 28, 30]
y_train = [18, 15, 12, 10]

# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
    sess.run(train, {x: x_train, y: y_train})

# evaluate training accuracy
curr_a, curr_b, curr_loss = sess.run([a, b, loss], {x: x_train, y: y_train})
print("a: %s b: %s loss: %s" % (curr_a, curr_b, curr_loss))

代码几乎和TensorFlow Get Started官方代码一致,主要区别在于训练数据不同,以及初始值不同。

  • TF官方的训练数据是x_train = [1, 2, 3, 4],y_train = [0, -1, -2, -3],而我们的训练数据是“平行世界”的观察记录x_train = [22, 25, 28, 30],y_train = [18, 15, 12, 10]。
  • TF官方的(a, b)初始值是(.3, -.3), 我们的是(-1., 50.)。
  • 或许你还发现在官方版本的loss函数末尾没有/ 8,是因为我使用均方差的缘故,8由4x2得到(4个训练数据)。

重点说下tf.train API。tf.train.GradientDescentOptimizer即封装了梯度下降算法。梯度下降在数学上属于最优化领域,从其名字Optimizater也可体现出。其参数就是“学习率”(learning rate),先记住这个名词,暂不展开,其基本的效用是决定待调整参数的调整幅度。学习率越大,调整幅度越大,学习的越快。反之亦然。可也并不是越大越好,是相对来说的。先取0.01。

另一个需要输入给梯度下降算法的就是loss,它是求最优化解的主体,通过optimizer.minimize(loss)传入,并返回train节点。接下来在循环中执行train节点即可,循环的次数,即训练的步数。

执行计算图,程序输出:

a: [ nan] b: [-inf] loss: nan

这个结果令人崩溃,仅仅换了下TF官方get started中例子中模型的训练数据和初始值,它就不工作了。

先来看看问题在哪。一个调试的小技巧就是打印每次训练的情况,并调整loop的次数。

for i in range(49):
    sess.run(train, {x: x_train, y: y_train})
    curr_a, curr_b, curr_loss = sess.run([a, b, loss], {x: x_train, y: y_train})
    print("a: %s b: %s loss: %s" % (curr_a, curr_b, curr_loss))

程序输出:

overflow

TF实际是工作的,并没有撂挑子。只是它训练时每次调整(a, b)都幅度很大,接下来又矫枉过正且幅度越来越大,导致最终承载a和b的tf.float32溢出而产生了nan。这不是TF的一个bug,而是算法本身、训练数据、学习率、训练次数共同导致的(它们有个共同的名字:超参数。)。可见,训练是一门艺术

直觉上,初始值或许有优劣之分,或许是离最优值越近的初始值越容易找到。可是训练数据则应该是无差别的吧?实则不然。但是现在我还不打算把它解释清楚,等后面分析完梯度下降算法后再回来看这个问题。

遇到该问题的也不再少数,Stack Overflow上已经很好的回答了。我们先通过调整学习率和训练次数来得到一个完美的Ending。

把学习率从0.01调制0.0028,然后将训练次数从1000调整至70000。

程序输出:

a: [-1.02855277] b: [ 40.75948715] loss: 0.00379487

最终代码如下:

import tensorflow as tf

# model parameters
a = tf.Variable([-1.], tf.float32)
b = tf.Variable([50.], tf.float32)

# model input and output
x = tf.placeholder(tf.float32)
linear_model = a * x + b
y = tf.placeholder(tf.float32)

# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) / 8   # sum of the squares

# training data
x_train = [22, 25, 28, 30]
y_train = [18, 15, 12, 10]

# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.0028)
train = optimizer.minimize(loss)

# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(70000):
    sess.run(train, {x: x_train, y: y_train})

# evaluate training accuracy
curr_a, curr_b, curr_loss = sess.run([a, b, loss], {x: x_train, y: y_train})
print("a: %s b: %s loss: %s" % (curr_a, curr_b, curr_loss))

下载 tf_5_tf.train.py

TensorBoard

TF的另一个强大之处就是可视化算法的TensorBoard,把构造的计算图显示出来。图中显示,每一个基本运算都被独立成了一个节点。除了图中我标注的Rank节点、range节点,start节点、delta节点外,其他节点都是由所写代码构建出来的。

TensorBoard

词汇表

  • derivative; 导数;
  • estimator: 估计;
  • gradient descent: 梯度下降;
  • inference: 推理;
  • linear regression:线性回归;
  • loss function: 损失函数;
  • magnitude: 量;
  • optimal: 最优的;
  • optimizers: 优化器;

上一篇 4 第一个机器学习问题
下一篇 6 解锁梯度下降算法


共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,835评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,598评论 1 295
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,569评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,159评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,533评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,710评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,923评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,674评论 0 203
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,421评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,622评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,115评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,428评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,114评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,097评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,875评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,753评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,649评论 2 271

推荐阅读更多精彩内容